Impacts of temperament on reproductive performance of *Bos indicus* and *B. taurus* beef females

Applied Reproductive Strategies in Beef Cattle

Reinaldo F. Cooke
Oregon State University – EOARC, Burns

What is Temperament?

- Behavioral responses of cattle when exposed to human handling
- As cattle temperament worsens:
 - Response to human contact becomes more excitable
- Selection for temperament (docility):
 - Heritable trait - Up to $h^2 = 0.50$
 - Mainly for safety reasons
 - Productive implications being established

How to assess temperament?

- Chute Score
 - Cattle are individually restrained in the chute
 - Scored in 1-5 scale according to behavior
 1. Calm with no movement
 2. Restless movement
 3. Frequent movement with vocalization
 4. Constant movement, vocalization, shaking of chute
 5. Violent and continuous struggling

- Exit Velocity or Score
 - Speed of cattle after it leaves the chute
 - Methods for measurement
 - Electronic
 - Establish distance to be traveled by the animal (feet)
 - Measure time (chronometer, infrared sensor in seconds)
 - Classify animals according to speed (feet/second)
 - Visual
 1. Walks away from the chute
 2. Trots away from the chute
 3. Runs away from the chute
How to assess temperament?
Chute Score and Exit Velocity

- Use scores individually
- Average both scores = Temperament Score

Temperament Score

- $n = 430$
- $r = 0.60$
- $P < 0.01$

Cooke et al. (2010)

How to assess temperament?
Temperament type

- Based on Temperament Score
 - Adequate temperament (TS ≤ 3)
 - Excitable temperament (TS > 3)

- Maintain "some" temperament in the herd
 - Without impairing safety and productive traits
 - Cow-calf systems
 - Pairs survive challenges of extensive environments
 - Feedlot systems
 - Competition for bunk space

Factors that affect temperament

- Sex
 - Females are more temperamental

- Age
 - Young animals are more temperamental

- Production system
 - Range cattle are more temperamental

- Breed type
 - Greatest source of variation
 - *Bos indicus* cattle are more temperamental

Temperament x Production
What's the relationship?

- Reducing feed intake and nutritional status?
- Physiological effects?
 - Fear-related stress responses
 - Including CRH – ACTH - cortisol axis
 - Impact several metabolic processes
 - Imperative for optimal cattle performance

- Genetic effects?
 - Relationship among behavioral and reproductive traits is still unknown – deserves investigation

Temperament x Cortisol

Brangus/Braford replacement heifers

- $n = 74$
- $r = 0.58$
- $P < 0.01$

Cooke et al. (2009)

Temperament x Cortisol

Brangus/Braford mature cows

- $n = 488$
- $r = 0.49$
- $P < 0.01$

Cooke et al. (2009)
Temperament x Cortisol

Angus x Hereford mature cows

![Plasma cortisol, ng/mL vs Temperament Score](Cooke et al., 2012)

- **P** < 0.01
- n = 450

Temperament x Cortisol

Nelore (Bos indicus) mature cows

![Plasma cortisol, ng/mL vs Temperament Score](Cooke et al., 2015)

- **P** < 0.01
- n = 955

Temperament x Reproduction

Physiological effects

- Acclimated to human handling = calm temperament
- **P** < 0.01

![Plasma LH, Mean (ng/mL) and Pulses/4h](adapted from Cooke et al., 2009)

- Acclimated vs Non-acclimated
- Adapted from Echternkamp (1984)

Temperament x Reproduction

- Heifers pubertal by 12 mo of age
- **P** < 0.05

![Pubertal vs Non-pubertal](adapted from Cooke et al., 2009)

- Temperament Score (1 to 5)

Temperament x Reproduction

Braford mature cows

- Probability of pregnancy, %
- **P** < 0.01, n = 400

![Assessed at beginning of breeding season (90-d bull only)](Cooke et al., 2009)
Temperament x Reproduction
Braford mature cows
Assessed at beginning of breeding season (90-d bull only)

Linear effect; P < 0.01, n = 400

Plasma cortisol, ng/mL

Temperament x Reproduction
Nelore mature cows
Assessed at fixed time AI

Temperament x Reproduction
Nelore mature cows
Assessed at fixed time AI

Temperament x Reproduction
Angus x Hereford mature cows
Assessed at beginning of breeding season (FTAI + 50-d bull)

Temperament x Reproduction
Angus x Hereford mature cows
Assessed at beginning of breeding season (FTAI + 50-d bull)

Cooke et al. (2009)

Cooke et al. (2010)

Cooke et al. (2011)

Cooke et al. (2012)
Temperament x Reproduction
Angus x Hereford mature cows

Calf weaning BW

- Adequate (≤ 3): 248 kg
- Excitable (> 3): 247 kg

Kg of weaned calf per cow exposed to breeding

- Adequate (≤ 3): 223 kg of weaned calf/cow
- Excitable (> 3): 207 kg of weaned calf/cow

Temperament x Reproduction
Nelore mature cows

Assessed at 1st fixed time AI, followed by resynch/clean-up bulls

<table>
<thead>
<tr>
<th>Item</th>
<th>Excitable (n = 227)</th>
<th>Adequate (n = 726)</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCS</td>
<td>5.33</td>
<td>5.34</td>
<td>0.06</td>
<td>0.91</td>
</tr>
<tr>
<td>BW, kg</td>
<td>427</td>
<td>431</td>
<td>3</td>
<td>0.28</td>
</tr>
<tr>
<td>Age, mo</td>
<td>96.1</td>
<td>100.2</td>
<td>2.6</td>
<td>0.27</td>
</tr>
<tr>
<td>Days post-partum</td>
<td>51.3</td>
<td>51.4</td>
<td>0.4</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Pregnancy rate, %

- First AI, %: 41.0 vs. 47.2, P = 0.50
- Second AI, %: 39.2 vs. 43.1, P = 0.56
- Bull breeding, %: 93.7 vs. 96.1, P = 0.46
- Final, %: 78.3 vs. 76.0, P = 0.23
- Calving rate, %: 74.9 vs. 74.9, P = 0.92
- Pregnancy loss, %: 11.4 vs. 5.4, P = 0.08

Probability of pregnancy, %

Linear effect: P = 0.01, n = 953

Hair cortisol, pg/mg

- Excitable (n = 227)
- Adequate (n = 726)

- No relationship with plasma cortisol at 1st AI
- Overall cortisol concentrations previous 14-21 d
- Cattle not handled daily...
Temperament x Reproduction

• Excitable temperament is detrimental to:
 – Reproductive performance of females
 • Independent of breed
• But how?
 – Nutritional status was accounted in studies
 – Physiological effects (cortisol, what else?)
 • Cortisol = during handling / 1st AI…
 • Bull breeding? Pregnancy loss? Cattle not handled…
 – Genetic relationship? Still unknown
• Improve temperament of the cowherd
 – Benefit production in cow-calf operations

Temperament x Reproduction

• Strategies to improve herd temperament
 – Imperative to enhance beef production efficiency
 – Temperament as selection/culling criteria
 • Selection of sires
 • Culling aggressive and unproductive females
 • Maintain “some” temperament in the herd
 – Adequate handling of cattle
 • Aggressive and docile animals

Acclimation of young cattle to human interaction

Improving Temperament

• Acclimate cattle to human handling
 – Research studies conducted at UF and EOARC
• Grazing heifers
 – UF = Brangus/Braford
 – OSU = Angus x Hereford
 – Exposed or not to acclimation after weaning
 • 4 weeks total
 – Brought to the cowpens 3x/week
 • Exposed to common handling procedures
 – Growth, temperament, and reproduction

Acclimation of Heifers - UF

• After the acclimation process

Plasma cortisol, ng/mL

Pre-acclimation	Post-acclimation
Acclimated | Control
P < 0.01

Chute Score, 1-5 scale

Pre-acclimation	Post-acclimation
Acclimated | Control
P < 0.01

Cooke et al. (2009)
Acclimation of Heifers - UF
• Puberty attainment during the study
 - Cooke et al. (2009)
 - % of pubertal heifers
 - Acclimated vs. Control
 - P < 0.01

Acclimation of Heifers - UF
• Pregnancy during the breeding season
 - Cooke et al. (2009)
 - % of pregnant heifers
 - Acclimated vs. Control
 - P < 0.01

Acclimation of Heifers - OSU
• After the acclimation process
 - Cooke et al. (2012)
 - Plasma cortisol, ng/mL
 - Pre-acclimation vs. Post-acclimation
 - P < 0.01

Acclimation of Heifers - OSU
• After the acclimation process
 - Cooke et al. (2012)
 - % of pubertal heifers
 - Acclimated vs. Control

Acclimation of Heifers
• Acclimation of heifers to human handling
 - Decreased cortisol concentrations
 - Hastened reproductive development
 - Independent of breed type
• Effects on mature cows?
 - No positive effects detected
 - Cows often on extensive conditions
 - Improve temperament of mature cowherd
 - Include temperament in selection/culling criteria
Conclusions

- Excitable temperament is detrimental to:
 - Reproductive performance of females
 - Overall productivity of beef operations
 - Independent of breed type
- How?
 - Physiological + Genetic effects
 - Additional research needed
- Improve temperament of the cowherd
 - Benefit production in beef operations
 - Selection for temperament/acclimation to handling

Thank you for your attention

Oregon State University
Eastern Oregon Agricultural Research Center, Burns